Extensions 1→N→G→Q→1 with N=C62 and Q=C23

Direct product G=N×Q with N=C62 and Q=C23
dρLabelID
C23×C62496C2^3xC62496,42

Semidirect products G=N:Q with N=C62 and Q=C23
extensionφ:Q→Aut NdρLabelID
C62⋊C23 = C23×D31φ: C23/C22C2 ⊆ Aut C62248C62:C2^3496,41

Non-split extensions G=N.Q with N=C62 and Q=C23
extensionφ:Q→Aut NdρLabelID
C62.1C23 = C2×Dic62φ: C23/C22C2 ⊆ Aut C62496C62.1C2^3496,27
C62.2C23 = C2×C4×D31φ: C23/C22C2 ⊆ Aut C62248C62.2C2^3496,28
C62.3C23 = C2×D124φ: C23/C22C2 ⊆ Aut C62248C62.3C2^3496,29
C62.4C23 = D1245C2φ: C23/C22C2 ⊆ Aut C622482C62.4C2^3496,30
C62.5C23 = D4×D31φ: C23/C22C2 ⊆ Aut C621244+C62.5C2^3496,31
C62.6C23 = D42D31φ: C23/C22C2 ⊆ Aut C622484-C62.6C2^3496,32
C62.7C23 = Q8×D31φ: C23/C22C2 ⊆ Aut C622484-C62.7C2^3496,33
C62.8C23 = Q82D31φ: C23/C22C2 ⊆ Aut C622484+C62.8C2^3496,34
C62.9C23 = C22×Dic31φ: C23/C22C2 ⊆ Aut C62496C62.9C2^3496,35
C62.10C23 = C2×C31⋊D4φ: C23/C22C2 ⊆ Aut C62248C62.10C2^3496,36
C62.11C23 = D4×C62central extension (φ=1)248C62.11C2^3496,38
C62.12C23 = Q8×C62central extension (φ=1)496C62.12C2^3496,39
C62.13C23 = C4○D4×C31central extension (φ=1)2482C62.13C2^3496,40

׿
×
𝔽